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Abstract. This paper presents a generalization of incremental condition estimation, a technique for tracking the
extremal singular values of a triangular matrix. While the original approach allowed for the estimation of the largest
or smallest singular value, the generalized scheme allows for the estimation of any number of extremal singular values.
For example, we can derive estimates for the three smallest singular values and the corresponding singular vectors at
the same time. When estimating & singular values at the same time, the cost of one step of our generalized scheme on
an n X n matrix is O(nk?). Experimental results show that the resulting estimator does a good job of estimating the
extremal singular values of triangular matrices and that, in particular, it leads to an inexpensive, yet very accurate
and robust condition estimator.
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1 Introduction

Let A = [ay,---,an] be an m x n matrix, and let 1 > - > oningm,n) > 0 be the singular values of
A. The smallest singular value

Omin = Omin(m,n)
of A measures how close A is to a rank-deficient matrix [14, p. 19]. If one lets opax = o1, the
condition number

Umax

K:Z(A) n Omin
determines the sensitivity of equation systems involving A [14, 21]. For most practical purposes
an order-of-magnitude estimate of oy or k2(A) is sufficient. Most of the schemes for estimating
omin and &£2(A) apply to triangular matrices, since in common applications A will be factored into a
product of matrices involving a triangular matrix. A survey of those so-called condition estimation

techniques for triangular matrices as well as their applications is given by Higham [15].

All of these condition estimators estimate the smallest singular value of a triangular matrix R in
O(n?) time after it has been factored; and the entire condition estimation process has to be repeated
if one wishes to estimate the condition number of a different matrix R, even when R is closely related
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to R. This issue has been addressed by recent work on so-called incremental and adaptive condition
estimators.
Incremental condition estimation [3, 5] is an O(n) scheme to arrive at an estimate for the condition

number of R when
R R w ’

that is, R is R augmented by a column. This estimator is well suited for restricting column exchanges
in rank-revealing orthogonal factorizations [1, 2, 4, 6].

Adaptive condition estimation schemes address the issue of rank-one updates of a triangular ma-
trix R. Pierce and Plemmons [17, 16] suggest an O(n) scheme and Ferng, Golub, and Plemmons [11]
an O(n?) scheme for the situation where

RTR=RT"R + wu”.

These schemes are designed for recursive least-squares computations in signal processing. Shroff and
Bischof [18] extend this work to the general rank-one update

R:R—I—uvT,

which appears for example in many optimization algorithms. The key difference between these two
flavors of condition estimators is that incremental condition estimation obtains condition number es-
timates of a triangular factor that grows, whereas adaptive condition estimation maintains condition
estimates when information 1s added or extracted from an already existing factorization.

In this paper, we generalize incremental condition estimation to estimate any number of extremal
singular values (and the corresponding vectors) instead of just the largest or smallest one as the
original incremental condition estimation scheme suggested. In Section 2 we show how we can
estimate k extremal singular values by computing the eigensystem of a (k 4+ 1) x (k 4+ 1) symmetric
rank-one perturbed diagonal matrix, and we give some examples of how this scheme could be used.
In Section 3 we discuss the issues that arise in the accurate solution of this eigensystem in floating-
point arithmetic. In Section 4 we present numerical experiments showing that the scheme delivers
good singular value estimates and that, in particular, it delivers more reliable estimates for the
smallest singular value than the original incremental condition estimation (ICE) scheme. Lastly, we
present some concluding remarks and suggest some problems where it is useful to obtain estimates
of several extremal singular values and vectors.

2 Derivation of the Generalized Incremental Condition Es-
timation Scheme

Assume that we are interested in estimating k extremal singular values o;,,..., 04, (i; < ij41) of
an m x m upper triangular matrix B. Our scheme will be able to estimate extremal singular values
at both ends of the spectrum. Thus, for k& = 3, for example, we have four choices: (i1,is,13) =
(1,2,3),(1,2,m),(1,m—1,m), and (m —2,m — 1,m). Further assume that we have singular value

estimates 7,72, ...,7; and a corresponding set of orthonormal approximate left singular vectors x;,
that is,
||a:fIR||2 =71, TR0, j=1,...k,
and XX = I, where X = [z1,...,x1].
Our goal is to obtain updated singular value estimates 7;, 72, ..., 7% and corresponding approxi-

mate singular vectors &1, s, ...,y for the augmented matrix

- R

R - [ w ] ’

v



where w is an m-vector and 7 a scalar. A scheme that accomplishes this task cheaply (that is, in less
than O(n?) work), is called an ICE(k) estimator. We present the derivation for complex matrices,
which is in particular applicable to real matrices.

As was mentioned in [7], incremental condition estimation can be motivated by the following
well-known projection property of singular values. Let A be an n x n complex matrix and Y be an
n x I, 1 < n, complex matrix of orthonormal columns, that is, Y#Y = I. Then,

c1(A) > a1 (YHA), oo(A)>aa(YHA), .., a(A)>a(YHA (2.1)
and
on(A) < O'I(YHA), on-1(A) < Ul_l(YHA), ceey Opop(A) < Ul(YHA). (2.2)

The ICE scheme suggested in [3, 7] applies these inequalities to estimate either opax or opmin as
follows. We have

||${IR||2 =11, where 7| & Omax O 71 & Omin-

We let k=1,

A:R:[R :sz[x JEGW“V{ and l=k+1=2.

Inequalities 2.1 and 2.2 suggest that we calculate the extreme singular values and vectors of Y A
in order to estimate the extremal singular values of A. To this end, we consider the eigensystem of

M = YPTAATY
YHRRYY
2
= [Tl 0]—1—[:][0[,7], where a = zw.

Denoting M’s eigenvalues by A1, Aa, where A; > As, and the corresponding eigenvectors by z1 and
z2, we obtain the following ICE(1) estimates for R:

1 =+vA and 1 =Yz it T~ U'max(R)
71 =+Ay and #; = Yz ' ~ .

This scheme can be generalized as follows. Assume we have approximate singular vectors z;,j =
1,..., k corresponding to the k extremal singular values ¢;,,0,,...,0;, of A. That is,

lzf Rllo =75, 7m0y, j=1...k

and XX =1 where X = [z1,...,2;]. Now let

A= p= [R w] y = [l‘l e a 0] EG(m-I—l)Xk-I—l’ and 1=k 1.
¥ o - 0 1
To calculate the extreme singular values of Y7 A we compute the eigensystem of M = YH AAHY
Denote M’s eigenvalues by A1, Aa, ..., A;, where A; > A;41, and denote the corresponding eigenvec-
tors by 21, za, ..., zg41. Suppose that the first £ estimates 7, 7, ..., 7 approximate R’s large singular
values, 1 & 01(R), 72 = 02(R),..., 7 & 0¢(R), and suppose that the remaining k& — ¢ estimates ap-
proximate R’s small singular values, 7 & 07, (R), Tho1 & Om_1(R), ..., Tog1 & Om_(x—e—1)(R). We

then use 7;’s as new estimates for R defined by

72]'2\//\]' i‘jIYZ]', j:l,?,...,f,



and
%j:\/Aj_I_l’ i‘]IYZ]_l_l’ j:g—i—l,g—i—?,,k

We have, therefore, R
e Rl =7, j=12,.. .k,

and X# X = I. The first £ of the 7;’s approximate Rs large singular values, and the remaining & — /¢
approximate R’s small singular values. Moreover, from the Inequalities 2.1 and 2.2, we have

and R R R
T 2 0m(R), Te—1 2 om-1(R), .., Tep1 2 O —e—1)(R).

Hence, our scheme will underestimate the large singular values and overestimate the small ones.
To illustrate the scheme, let us consider k = 4 and ¢ = 2, that is, 7 & ¢1(R), 72 = 02(R), T3 &

om—1(R), and 74 & o (R). We let

and M = YHRRHY, a b x b Hermitian matrix. Denote M’s eigenvalues by Ay, As, ..., A5 and its
eigenvectors by z1,22,...,25. We now take M’s two extreme large and two extreme small singular
pairs to construct our estimates for R:

7=V, 7= Ve, 73 = VA, 71 = Vs,

and
i‘l = YZl, i‘z = YZQ, i‘g = YZ4, i‘4 = YZ5.

The computational cost of our scheme involves the computation of M’s eigensystem and k matrix-
vector multiplications Yz;. The matrix-vector multiplications cost 2mk? flops total. This is the
dominant cost, since our choice of Y gives M a simple structure:

M o= (21 ... OH R w RH x1 ... x O
0 ... 0 1 04 w5 0O ... 0 1
kit oy
7'22 oy
= +| [ o ... @ ¥, Whereozj:xfw.
Tkz X
L 0 Y

Thus, M is a symmetric rank-one perturbed diagonal matrix. The eigensystems of such matrices have
been well studied theoretically (see [8, 12, 13] for example), and they can be computed considerably
more efficiently than those of general ! x [ matrices. However, the computation of M’s eigensystem
using floating-point arithmetic was not resolved satisfactorily until the recent work of Sorensen
and Tang [19]. We therefore devote the next section to discussing the computational issues of our
condition estimation scheme.



3 Eigensystems of Symmetric Rank-One Perturbed Diago-
nal Matrices

The structure of M can be expressed as

61 51

P G|l - _
M = . +ro] . [ B2 ... Bi]

& Bi
= D+pbb, p>0and|b|ls = 1.

By applying the deflation techniques in [8; 19] if necessary, we can assume 8 > 8 > ...& and
|8;] > ¢ for j =1,2,...,{, where ¢ is the machine precision. As the derivation of our generalized
ICE scheme suggests, the mutual orthogonality of the approximate singular vectors of M is crucial.
Consequently, it is important that the computed eigenvectors of M be numerically orthogonal. As
it turns out, fulfilling this requirement is not a straightforward task.

With the assumptions that & > 6, > ... > & and |3;]| > ¢ (in particular, that |5;| > 0), M’s
eigenvalues A1, Ao, ..., A; satisfy the well-known interlacing property

M >0 >A >8> ...> A > 6.

An eigenvector corresponding to A; is given by

81— A s
by — Aj B2

(51 — /\]' Bl

Thus, provided that the differences A;; =6, — A;, j = 1,2,...,1, can be computed to full machine
precision, each component of the computed eigenvectors will be fully accurate, yielding a set of
numerically orthogonal eigenvectors.

A standard approach to determine the differences A;; is to numerically solve for the roots of the
secular equation (see [8] for example):

AR
_ J
fA) =1+ p;:l B\

Although different root finders had been proposed [8, 10], none could always guarantee numerical
orthogonality — all failed occasionally in a few examples, either contrived or natural. Only recently
did the analysis in [19] explain that there is an intrinsic difficulty related to the accuracy in which
f 1s evaluated. It was shown there that, for any given j, the magnitude

emax; [0;/(é — ;)|

f'(Az)
is a key indicator of the accuracy of the calculated differences A;;. In particular, since |5;| > ¢ for j =
1,2,...,1 the resulting bounds obtained for those magnitudes imply that numerical orthogonality

is guaranteed provided f is evaluated in a precision that doubles the working precision. An efficient
algorithm fulfilling this requirement without the need of a double-precision data type is also given
in [19]. We have employed this eigensystem solver throughout our condition estimation scheme.



4 Numerical Results

Our experiments were designed to answer several questions. First, we wished to see how much better
the original scheme is in estimating the smallest singular value of a matrix, since this is the difficult
part in obtaining a reliable two-norm condition number estimate. Second, we wished to get some
idea of how the accuracy of the generalized schemes varied as we increased k. Lastly, we wished
to get a feeling for the accuracy with which the generalized schemes estimate the other extremal
singular values whose estimates are being maintained.

In our tests, we employed various triangular matrices. For the first class of matrices, we chose
n singular values ¢1,09,...,0, (not necessarily in order) from [0, 1] according to some specified
distribution. Then, we employed Stewart’s method [20] to generate random orthogonal matrices U
and V. The upper-triangular matrices R used in testing were the R factor of the QR decomposition,

QR = Udiag(o1,09,...,0,)VT.
Three distributions for the singular values were used:

Cluster: ten singular values were chosen randomly from the interval [¢,4¢]; the rest were chosen
randomly from the interval (e, 1].

Exponential: the singular values were 1,7, 72, ..., 7"~ ! = 10710,

Randomlog: the singular values were random numbers in the range [107°, 1] such that their loga-
rithms were uniformly distributed.

Other matrices were

Random: R was the upper triangular factor of a QR factorization of a full matrix with elements
uniformly random distributed in (0, 1).

Difficult: R was generated so as to be a “difficult” matrix for the ICE(1) scheme for estimating the
smallest singular value and was generated as follows. Given an m x m triangular matrix 7'(m),
and an approximate smallest left singular vector of T' as generated by the ICE(1) scheme, we
augmented T by generating a random m-vector z, subtracting most of its contribution in the
direction of x. We then adjusted the diagonal entry 5 such that

T(m+1) = [ T(m) »2;]

was not too ill conditioned. Starting with m = 2, we thus built up an n x n matrix. As was
shown in [3], the ICE(1) scheme can produce arbitrarily bad estimates when z is orthogonal
to . While this is not the case here, these matrices should be more likely than others to cause
the ICE(1) scheme to produce large overestimates of the smallest singular value.

4.1 Accuracy of ICE(k) Estimates for Estimating the Smallest Singular
Value

Our first set of experiments was designed to show to what extent the generalized ICE scheme
improves the estimate for the smallest singular value. Let
in(k
rmin(k) = Tmm( )a
Omin
where Tmin (k) is the estimate for o, produced by the ICE(k) estimate with £ = 0, that is, the ICE-
vectors are approximations of the singular vectors corresponding to the k& smallest singular values.



Table 1: ICE(2) versus ICE(1)

rmin(l) rmin(2) rmax(l) rmax(2)
Distribution || Median Worst | Median Worst || Median Worst | Median  Worst
Exponential || 3.10 447 | 2.82 3.63 || 1.24 1.82 | 1.17 1.72
Randomlog 3.03 573 | 2.70 5.62 || 1.20 1.66 | 1.14 1.60
Cluster 4.75 17.00 | 3.89 9.92 || 1.15 1.26 | 1.13 1.21
Random 4.31 17.28 | 3.15 9.82 || 1.00 1.01 | 1.00 1.00
Dafficult 1.06 2181.30 | 1.03 15.18 || 2.18 2.54 | 1.66 2.09

Thus, ryin(k) is an overestimate of the smallest singular value by an ICE(k) estimate. Figure 1
shows average and maximum values of rpyin(k), where k ranges from 1 to 6. The experiments
reflect 50 trials with 50 x 50 matrices having a “random”, “exponential”, and “cluster” distribution.
For example, for the ‘random’ distribution, the worst-case value for rpi,(1) is 16.7, whereas the
worst-case value for rpin(2) is 6.4. In contrast, the average overestimate decreases from 3.8 to 2.9.
These results (as well as the results in the other plots, though in a somewhat less spectacular way)
suggest that the increase in accuracy for the smallest singular value is not very pronounced on
average, but that (as expected) the generalized ICE schemes are more robust, in that the worst-case
overestimate 1s reduced significantly. The plots also suggest that for the purposes of estimating only
the smallest singular value, using k = 2, that is ICE(2), seems to be fully sufficient, and that the
added computional cost for higher-degree ICE schemes is not rewarded by great improvements in
the estimate for oy,

4.2 ICE(2) Estimates for the Largest or Smallest Singular Values

The experiments of the preceding section prompted us to investigate the behavior of the ICE(2)
estimator in more detail. Table 1 shows (for £ = 1,2) the median and worst-case values for ryin (k)
and

Umax
rmax(k) = Tmax(k)’

where Tmax(k) is the estimate for the largest singular value of R using an ICE(k) estimator that
approximates the k largest singular values. These experiments reflect 100 trials with matrices of size
100 and 200 each. As was suggested by the previous round of experiments, the generalized scheme
does prevent “outliers” and increases the average accuracy of the condition estimation scheme. This
point is made in a particularly impressive fashion by the “difficult” matrices. As mentioned before,
they were designed to break the ICE(1) scheme, and they did. On one matrix, the ICE(1) scheme
overestimates the smallest singular value by a factor of more than 2,000. Equally surprising to us,
however, was the fact that the median overestimate for this distribution was only 1.06. Using the
ICE(2) scheme, the large overestimates disappear. The improvement realized by the ICE(2) scheme
in estimating o, was somewhat disappointing, largely in view of the already good performance of
the ICE(1) scheme.

While our exploration of the generalized ICE scheme was mainly motivated by the desire to
develop a more robust condition estimator, the ICE(2) schemes we employed also produce estimates
for o,,_1 and 5. In Table 2 we display the median and worst-case values of

Tn—1

Tn-1 =
On—1



